optunahub.samplers.SimpleBaseSampler

class optunahub.samplers.SimpleBaseSampler(search_space: dict[str, BaseDistribution] | None = None, seed: int | None = None)

A simple base class to implement user-defined samplers.

__init__(search_space: dict[str, BaseDistribution] | None = None, seed: int | None = None) None

Methods

__init__([search_space, seed])

after_trial(study, trial, state, values)

Trial post-processing.

before_trial(study, trial)

Trial pre-processing.

infer_relative_search_space(study, trial)

Infer the search space that will be used by relative sampling in the target trial.

reseed_rng()

Reseed sampler's random number generator.

sample_independent(study, trial, param_name, ...)

Sample a parameter for a given distribution.

sample_relative(study, trial, search_space)

Sample parameters in a given search space.