.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "recipes/003_pruner.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_recipes_003_pruner.py: .. _pruner: How to Implement Your Pruners with OptunaHub ========================================================= OptunaHub supports Optuna's pruners as well as samplers and visualization functions. This recipe shows how to implement and register your own pruner with OptunaHub. Usually, Optuna provides ``BasePruner`` class to implement your own sampler. You can implement your own pruner by inheriting this class. You need to install ``optuna`` to implement your own pruner. .. code-block:: bash $ pip install optuna .. GENERATED FROM PYTHON SOURCE LINES 21-22 First of all, import `optuna` and other required modules. .. GENERATED FROM PYTHON SOURCE LINES 22-28 .. code-block:: Python from __future__ import annotations import optuna from optuna.pruners import BasePruner .. GENERATED FROM PYTHON SOURCE LINES 29-31 Next, define your own pruner class by inheriting ``BasePruner`` class. In this example, we implement a pruner that stops objective functions based on a given threshold. .. GENERATED FROM PYTHON SOURCE LINES 31-58 .. code-block:: Python class MyPruner(BasePruner): # type: ignore def __init__(self, upper_threshold: float, n_warmup_steps: int) -> None: self._upper_threshold = upper_threshold self._n_warmup_steps = n_warmup_steps # You need to implement `prune` method. # This method returns true if it stops objective function, otherwise false. # It stops the objective function if the intermediate value exceeds the threshold. # Note that first `n_warmup_steps` steps are not pruned. def prune( self, study: optuna.study.Study, trial: optuna.trial.FrozenTrial, ) -> bool: step = trial.last_step if step is None: return False if step < self._n_warmup_steps: return False if trial.intermediate_values[step] > self._upper_threshold: return True return False .. GENERATED FROM PYTHON SOURCE LINES 59-61 In this example, the objective function is a simple quadratic function. It has 20 variables and the sum of the squares of these variables is returned. .. GENERATED FROM PYTHON SOURCE LINES 61-74 .. code-block:: Python def objective(trial: optuna.trial.Trial) -> float: s = 0.0 for step in range(20): x = trial.suggest_float(f"x_{step}", -5, 5) s += x**2 trial.report(s, step) if trial.should_prune(): raise optuna.TrialPruned() return s .. GENERATED FROM PYTHON SOURCE LINES 75-77 This pruner can be used in the same way as other Optuna pruners. In the following example, we create a study and optimize it using ``MyPruner`` class. .. GENERATED FROM PYTHON SOURCE LINES 77-81 .. code-block:: Python pruner = MyPruner(upper_threshold=100, n_warmup_steps=5) study = optuna.create_study(pruner=pruner) study.optimize(objective, n_trials=100) .. GENERATED FROM PYTHON SOURCE LINES 82-85 After implementing your own pruner, you can register it with OptunaHub. See :doc:`002_registration` for how to register your pruner with OptunaHub. See `the User-Defined Pruner documentation `_ for more information to implement an pruner. .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 4.429 seconds) .. _sphx_glr_download_recipes_003_pruner.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 003_pruner.ipynb <003_pruner.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 003_pruner.py <003_pruner.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: 003_pruner.zip <003_pruner.zip>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_